
Aspects of the HANA-optimized InfoCube

Contents
Aspects of the HANA-optimized InfoCube .. 1

Author .. 1

Introduction – From relational to in-memory thinking ... 1

HANA-Optimized InfoCubes – Simplified Modeling, Faster Loads .. 1

HANA-Optimized InfoCubes – How to Get It ... 3

HANA-Optimized InfoCubes – What do I have to consider? ... 3

HANA-Optimized InfoCubes and Data Store Objects (DSOs) .. 4

Take-aways .. 6

References ... 6

Author
Klaus Nagel: Development Manager, TIP In-Memory Platform BW (SAP AG).

Klaus Nagel joined SAP more than 10 years ago and started as a Developer in the BW team. He now

holds the position of Development Manager and leads the BW&HANA Data Management team.

Introduction – From relational to in-memory thinking
Multi-dimensional models for analytic applications are represented on a classic RDBMS as star

schemas. A valid star schema implementation is one of the most challenging tasks – a bad design has

direct negative impact on data load and query performance. The question arises whether the strong

link between logical multidimensional model and the data base implementation as a star schema

does still hold in times of a modern in-memory database like SAP HANA.

HANA-Optimized InfoCubes – Simplified Modeling, Faster

Loads

The InfoCube in BW is represented by the BW-extended star schema with 2 fact tables (E-table with

read-optimized partitioning, F-table with write/delete-optimized partitioning), dimension tables as

grouping sets of characteristics and shared Masterdata tables (see figure 1 – left side). While this

schema is optimized for classic RDBMS technology, it is not required for a modern in-memory

database like SAP HANA. The schema can be greatly simplified by using only one fact table (HANA

can perform read, write and delete operations equally fast on the same layout) and joining directly to

the Masterdata tables (see figure 1 – right side).

Figure 1: Classic BW-extended Star Schema versus HANA-optimized Star Schema

The main benefits of such a simplified structure are

 Simplified modeling: Dimensions as grouping sets of characteristics are still available in the

InfoCube modeling, but they are pure metadata now. They do not impact the physical

representation on the database any longer, such eliminating the need to take this aspect into

account when modeling an InfoCube. I.e. there will be no more “badly” modeled InfoCubes with

huge dimension tables and its corresponding negative impact on querying and loading

performance. Note that there are also no more Line Item dimensions (all characteristics are

physically Line Items now) and there is no need to set the high cardinality flag anymore.

 Simplified re-modeling: Adding a new keyfigure to an InfoCube in BW-on-HANA is easy, since

adding a column on a columnar storage is a very fast operation. But now it is also easy to move

characteristics from one dimension to another dimension. This is a pure metadata change and

can be done without re-modeling, but directly in the InfoCube maintenance.

 Faster loading: Creating the BW-extended star schema during InfoCube load can take most of the

time depending on the number of characteristics and the size of the dimension tables. The

DIMIDs that represent the foreign keys to join fact tables and dimensions tables need to be

looked up for new tuples or have to be created if they do not yet exists. On an average we have

seen in real customer examples that loading into a HANA-optimized InfoCube is 3-5 times faster

than into the Standard InfoCubes.

The Query performance does not improve in general due to the HANA-optimized schema. You can

find queries that benefit from the classic schema as well as queries that improve on the new schema.

But the runtime difference is negligible.

Note that there is one exception with respect to the table layout. We still have a package dimension

table for the HANA-optimized InfoCube. Here the advantage to do very fast Request deletion is

simply too big, while the effect on load performance to create the package dimension entries is

negligible.

HANA-Optimized InfoCubes – How to Get It

To get to a HANA-optimized InfoCube is a really simple conversion step. You can either trigger it from

the InfoCube maintenance (Menu: GoTo  “Conversion to SAP HANA optimized …”) or via program

RSDRI_CONVERT_CUBE_TO_INMEMORY. You can select one or many InfoCubes. The application log

is either shown directly or can be found using the filter “OBJECT = RSDRI, SUBOBJECT =

REFACTOPRING” in transaction SLG1.

After the conversion the HANA-optimized InfoCube behaves just as the Standard InfoCube before,

i.e. there is no need to change any load process or DTP, nor MultiProviders or Queries on top!

During a conversion a lock is set, preventing all maintenance activity and load processes. Querying on

the InfoCubes is however possible during this time.

Conversion times: The conversion is executed as a Stored Procedure within HANA and therefore

shows an excellent performance. We have tested the conversion routine with many customer

scenarios and have seen always runtimes of only a few minutes even for very large InfoCubes (e.g. 12

minutes for an InfoCube with more than 400 million records). The exact runtime depends of course

on the distribution of the data, number of fields, especially characteristics, and the hardware of the

HANA appliance.

HANA-Optimized InfoCubes – What do I have to consider?
Currently there are no limitations known for HANA-optimized InfoCubes, also InfoCubes with non-

cumulative keyfigures can be converted (also if data is loaded via a “3.x dataflow” (Update rules) –

we, of course, strongly recommend to switch to the new dataflow (DTP) logic, as they benefit a lot

more from HANA than the old ones!).

We therefore recommend to convert all InfoCubes to the new HANA-optimized type, but this can be

done step-by-step and the conversion can run in load windows over night or on weekends.

As for InfoCubes in a classic BW system, a maximum of 233 keyfigures, 16 dimensions, and 248

characteristics can be modeled for a HANA-optimized InfoCube.

Partitioning: The fact table of a HANA-optimized InfoCube can (and must) no longer be partitioned

semantically, i.e. using a time characteristic to split the data into disjoint partitions. Query

performance is fast even without such partitions on very large fact tables. However, overall 4

different partitions are created automatically for every fact table: Partition 1 for non-compressed

Requests, Partition 2 for compressed Requests, Partition 3 for reference points of the inventory data,

and Partition 4 for so-called historic movements of inventory data. Partitions 3 and 4 are created also

if the InfoCube does not contain any inventory/non-cumulative keyfigure, they are then always

empty.

Even so there are no two different fact tables anymore for HANA-optimized InfoCubes, you still have

the option to run InfoCube-compression, i.e. aggregate an interval of Requests into Request = 0 in

the InfoCube. This can be especially helpful, if you expect a significant size reduction due to many

inverse bookings of requests. But it is not required to run the compression for query performance

reasons, since the impact of size difference before and after compression of the fact table is

negligible for the read performance. Compressing the InfoCube can however have a positive impact

on the load time, or to be exact the MERGE time for an InfoCube fact table (for details on the MERGE

process s in BW-on-HANA see [1]). As mentioned above, fact data for Request > 0 and Request = 0

are stored in different partitions, therefore the MERGE process after loading a Request to an

InfoCube only runs on the “Request > 0” partition – and the smaller this partition, the faster the

MERGE. But this becomes only relevant for large and very large InfoCubes. “Request > 0” partitions

with 10-50 million records are not a problem, i.e. if your InfoCube is only of this size, there is no need

to run compression at all. InfoCube-compression is also executed as a HANA-optimized

StoredProcedure.

Inventory handling: The handling of “historic movements” has changed for the new HANA-optimized

InfoCubes (only those!). Previously you had to identify the requests with historic movement after

they were loaded and had to run InfoCube-compression with a specific setting (“no marker update”)

for those (if you forgot this or forgot to remove the setting afterwards, you had corrupt data in the

InfoCube!). Now this setting is part of the DTP, i.e. you identify already in the load process, if the data

are “historic movements”. These requests are then marked via “RECORDTP = 2” in the package

dimension table and handled accordingly during querying and InfoCube-compression (RECORDTP = 0

are deltas, RECORDTP = 1 are reference points). The setting for “historic movements” for the

InfoCube-compression is then no longer necessary (and available) in the InfoCube manage screen

(checkbox “no marker update” is no longer displayed). Exception: If data is loaded to the HANA-

optimized InfoCube via a 3.x dataflow the setting is still available and has to be set for the requests

prior to compressions. In such cases the RECORDTP is updated to 2 prior to the actual compression

algorithm.

Any new InfoCube created in a BW-on-HANA system will automatically be a HANA-optimized

InfoCube. There is no possibility (and no need) to create Standard InfoCubes any more since the

HANA-optimized covers all aspects of an InfoCube (even better). It does not matter whether the

InfoCube is created in the InfoCube maintenance, via the BAPi or imported via transport.

We strongly recommend to have the complete BW landscape (Sandbox/Test  Quality 

Production) on BW-on-HANA to have a clear test and consolidation path. However it may be that you

need to transport an InfoCube from a non-HANA BW system into a BW-on-HANA system. This is

possible and the InfoCube is automatically converted into a HANA-optimized InfoCube as part of the

“After-Import” method.

Note that for any type of InfoCube, not only the HANA-optimized ones, you do no longer need DB

indexes and DB statistics anymore. Therefore you can remove all these processes within your process

chains – which again leads to a faster and more simplified data load. If you do not remove these

processes in the process chains, they will simply do nothing.

HANA-Optimized InfoCubes and Data Store Objects (DSOs)
Since all DSOs (not only the HANA-optimized DSOs) are based on in-memory data and columnar

tables read access to DSOs is much, much faster compared to DSO access on traditional databases.

But the real boost in query performance comes if we can push BW-OLAP operations down to the

Calculation Engine of HANA (Hierarchy processing, MultiProvider UNION, restricted keyfigures,

exception aggregation, currency conversion, and many more to come). The access to the HANA

Calculation Engine is then not via standard SQL, but via a special API that BW already leverages in the

case of BW Accelerator. And it requires SIDs for all characteristic values. Therefore the optimized

Calculation Engine access to DSO data requires that the DSO has the property “SID generated during

activation” (we will publish more details on this and the huge performance improvements for the SID

generation during DSO activation with HANA shortly here on SDN as well, currently see [2]).

So for DSOs with the “SID-flag” turned on, we can access the data via the Calculation Engine and we

see in all customer examples and test cases so far the same excellent performance when reporting

on a DSO or an InfoCube (of course only if both contain the same data in the same granularity). This

is the case despite the fact that in general a query on a DSO has to process more JOINs than a query

on an InfoCube (see figure 2).

Figure 2: Statement for a Query with a GROUP BY on Country and a filter on a hierarchy node for a

DSO and an InfoCube

So you might ask, why do we still offer InfoCubes at all and why do we not recommend to switch to

DSOs only. Well, first of all InfoCubes are still there for the simple reason of the non-disruptive

approach of BW-on-HANA. After the migration to HANA as database, the BW system behaves as

before and any further optimizations with respect to the new HANA-based capabilities can be turned

on step-by-step. But there are also some hard and some soft facts of why InfoCubes may still be

required.

Hard facts (as of now):

 non-cumulative keyfigures can only be modeled in InfoCubes,

 integrated planning can only be done on (transactional) InfoCubes,

 the external write-interface (RSDRI) only works for InfoCubes .

Soft facts:

 an InfoCube represents a multi-dimensional model – a DSO not. If you use, as recommended

anyway, a MultiProvider as abstraction layer on top, this aspect can be ignored

 the Update handling of InfoCubes and DSOs differ significantly: An InfoCube is insert-only (or,

equivalent, all characteristics are keys), while a DSO still has the limitation of maximal 16 keys.

This has a different semantic and also has an impact on e.g. auditing that has to be taken into

account.

 data visibility: in a non-transactional InfoCube data is only visible after the complete request has

been successfully loaded, while data becomes visible in a DSO during activation based on the

Commits after packages.

Figure 3: Possible reduction of layers with the migration and adoption to HANA.

Take-aways

 Conversion to HANA-optimized InfoCubes is simple, fast and brings big benefits – and you can do

this step-by-step

 Removing the InfoCube-layer for certain scenarios and reporting directly on DSOs is possible and

removes another materialized layer – but it has to be assessed scenario by scenario based on

Query performance and semantic/business requirements

References
[1] SDN Article on HANA-MERGE process in BW: to be published shortly

[2] SAP Online Help, HANA-optimized DSO:

http://help.sap.com/saphelp_nw73/helpdata/de/32/5e81c7f25e44abb6053251c0c763f7/content.ht

m

http://help.sap.com/saphelp_nw73/helpdata/de/32/5e81c7f25e44abb6053251c0c763f7/content.htm
http://help.sap.com/saphelp_nw73/helpdata/de/32/5e81c7f25e44abb6053251c0c763f7/content.htm

